Search Help
Did you find what you were looking for? Yes No
Implementation of a sea-ice model for application in the Antarctic
Entry ID: ASAC_2504

Abstract: Metadata record for data from ASAC Project 2504
See the link below for public details on this project.

In this project a sea-ice model for application in Southern Ocean climate and forecasting studies will be developed to amend identified deficiencies in numerical models (i.e. unaccounted short-term dynamics; or non-suitable ice rheology). In-situ deformation and ice-stress data will be used to derive parameterisations suitable for the Southern Ocean pack.

Antarctic sea ice is an important component of the Southern Hemisphere climate. It provides a habitat for algae, plankton and for larger species such as mammals or penguins. It is a transport medium for freshwater and biological matter. On the other hand it acts like a barrier between ocean and atmosphere in regard to the exchange of thermal energy, water vapour and gases. Sea ice affects the polar climate in many ways: E.g., by effectively insulating the ocean from the colder atmosphere the sea ice enables an advection of relatively warm water onto the shallow Antarctic continental shelf. This warmer water is then available to interact with other components of the climate system, such as by basal melting of the continental ice shelves [Jenkins and Holland, 2002]. Also, due to its high albedo, the sea ice has a large-scale effect on the net incoming solar radiation [Ebert et al., 1995] and reduces the absorption of solar energy into the upper ocean. The thermodynamic growth of seaice and the consequent desalination of the ice gives rise to a transport of salt from the ice into the ocean, which increases the water density over the shelf, thereby driving the deep vertical overturning cell in the global ocean circulation. High ice-growth rates (e.g., in regions of polynyas) are generally concentrated in small areas in shallow waters. These regions are often insufficiently resolved or even unresolved in coupled climate models, which are generally configured to run at a spatial resolution of 2 degree longitude by 1 degree latitude or coarser [Zhang and Hunke, 2001].

The specific objectives of this project are to:

* identify the variabilities in the sea-ice characteristics and the underlying physical processes;

* identify the time scales, at which the sea ice interacts with the ocean and atmosphere;

* assess the contribution of sub-daily ice motion and deformation due to tidal forcing and inertial response to changes within the Antarctic ocean-ice-atmosphere system;

* derive the impact of sub-daily ice dynamics on the sea-ice area, extent and mass on interannual and decadal time scales;

* determine the scale effect of dynamic processes on the accuracy of modelled sea-ice parameters using a global high-resolution model;

* identify model uncertainties through comprehensive validation studies.

However, logistical problems prevented the project from collecting any data in the field.

To overcome the paucity of planned buoy data we used the following data sets to address some of the aspects of the original proposal:

1) Sea-ice buoy data:
ISPOL 2004: See AAS #2500 for metadata.

2) Numerical investigations:

We have investigated the failure of sea ice using an isotropic model [Hibler, 1979], where ice strength is modelled as a random variable in the model space. In situ weakening was prescribed by a fracture-based Coulombic rheology [Hibler and Schulson, 2000]. We realised this by parameterising weakening with an ice-strength parameter of 1000 and initialising the ice strength across the model grid by random. The simulations were run over a 2000 km by 2000 km region and forced, from rest, with an idealised wind field. We analysed the sensitivity of failure to ice strength and wind stress as well as the intersection angle of the wind stress, and conducted idealised 2D failure experiments.

Related URL
Link: View Related Information
Description: Public information for ASAC project 2504

Link: View Related Information
Description: Download point for the papers

Link: View Related Information
Description: Citation reference for this metadata record and dataset

Geographic Coverage
 N: -60.0 S: -70.0  E: 180.0  W: -180.0

Data Set Citation
Dataset Originator/Creator: Heil, P.
Dataset Title: Implementation of a sea-ice model for application in the Antarctic
Dataset Series Name: CAASM Metadata
Dataset Publisher: Australian Antarctic Data Centre
Online Resource:

Temporal Coverage
Start Date: 2004-12-01

Location Keywords

Science Keywords

ISO Topic Category

Dates provided in temporal coverage are approximate only.

All field work for this project was unfortunately cancelled due to difficulties on board the ship. As a result this project became purely a modeling project.

Access Constraints
Copies of some of the referenced papers are attached to this record, but they are not available for download.

Details of the models developed are listed in the referenced publications.

Use Constraints
This data set conforms to the PICCCBY Attribution License

Please follow instructions listed in the citation reference provided at when using these data.

Sea ice

Data Set Progress

Originating Center
Australian Antarctic Division

Data Center
Australian Antarctic Data Centre, Australia    [Information]
Data Center URL:

Data Center Personnel
Phone: +61 3 6232 3244
Fax: +61 3 6232 3351
Email: metadata at
Contact Address:
Australian Antarctic Division
203 Channel Highway
City: Kingston
Province or State: Tasmania
Postal Code: 7050
Country: Australia

Distribution_Media: HTTP
Distribution_Size: 3.2 MB
Distribution_Format: pdf
Fees: Free

Phone: +61 3 6226 7646
Fax: +61 3 6226 7650
Email: petra.heil at
Contact Address:
Antarctic CRC
GPO Box 252 - 80
University of Tasmania
City: Hobart
Province or State: Tasmania
Postal Code: 7001
Country: Australia

Stevens, R.P. and Heil, P. (2011), The interplay of dynamic and thermodynamic processes in driving the ice-edge location in the Southern Ocean., Annals of Glaciology, 52, 57, 27-34

Roberts, J., Heil, P., Phipps, S.J. and Bindoff, N. (2007), AusCOM: The Australian Community Ocean Model Journal of Research and Practice in Information Technology, 39, 2, 137-150

Heil, P., Worby, A.P., Hutchings, J.K., Hibler, W.D., Johannessen, M., Launiainen, J. and Haas, C. (2007), Ice drift and deformation, during ISPOL2004 14th AMOS Conference, 5th-7th February 2007, Adelaide, Australia, 1

Heil, P. (2007), In situ observations of Antarctic sea-ice drift and deformation, Argos User Meeting, 1st April 2007, Hobart, Australia, 1

Roberts, J.L., Heil, P., Murray, R.J., Holloway, D.S. and Bindoff, N.L. (2006), Pole relocation for an orthogonal grid: An analytic method., Ocean Modelling, 12, 16-31

Hutchings, J.K., Heil, P. and Hibler III, W.D. (2005), Modeling linear kinematic features in sea ice., Monthly Weather Review, 133, 3481-3497

Roberts, J., Heil, P., Phipps, J., Bindoff, N., Brassington, G., Alves, O., Hanson, L., Schiller, A. and Fiedler, R. (2005), AusCOM: The Australian Community Ocean Model., APAC-05 Conference on Advanced Computing, Grid Applications and eResearch, Gold Coast, Australia, 26th-29th September 2005, 15

Heil, P., Worby, A.P., Hutchings, J.K., Launiainen, J., Johansson, M. and Hibler III, W. (2005), Ice Station POLarstern (ISPOL):Drifting Buoy Data Report, Antarctic Climate and Ecosystems Cooperative Research Centre, 1, 20

Heil, P. (2005), Improved treatment of ice-ocean interactions enhances climate modelling., Australian Antarctic Magazine, 9, 10

Roberts, A., Heil, P. and Budd, W.F. (2004), Medium range prediction of Antarctic sea ice., 1st General Assembly Nice, France, 25-30 April 2004

Heil, P., Roberts, J.L., Phipps, S.J., Fiedler, R.A.S. and Bindoff, N.L. (2003), Toward a high-resolution coupled ocean-sea ice model., APAC'03 on Advanced Computing, Grid Applications and eResearch, Gold Coast, Australia, 29th Sep - 2nd Oct 2003., 1, 10, 0-9579303-1-3

Heil, P. and Bindoff, N. (2003), TPAC workshop on Coupled Oceans and Atmospheres., Bulletin of the Australian Meteorological and Oceanographic Society., 16, 48-49

Hibler, W.D. III (1979), A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., 9, 815 - 846

Hibler, W.E., and E. Schulson (2000), On modelling the anisotropic failure and flow of flawed sea ice, J. Geophys. Res., 105, C7, 17105 - 17120

Creation and Review Dates
DIF Creation Date: 2005-03-02
Last DIF Revision Date: 2016-06-17

Link to Web Site