Search Help
Did you find what you were looking for? Yes No
NOAA National Centers for Environmental Prediction (NCEP)'s Global Forecast System (GFS) Model
Entry ID: NOAA_NCEP_GFS_Model


Summary
Abstract: The Global Forecast System (GFS) is a weather forecast model produced by the National Centers for Environmental Prediction (NCEP). Dozens of atmospheric and land-soil variables are available through this dataset, from temperatures, winds, and precipitation to soil moisture and atmospheric ozone concentration. The entire globe is covered by the GFS at a base horizontal resolution of 18 miles (28 kilometers) between grid points, which is used by the operational forecasters who predict weather out to 16 days in the future. Horizontal resolution drops to 44 miles (70 kilometers) between grid point for forecasts between one week and two weeks.

Related URL
Link: View Related Information
Description: NOMADS Access to GFS (and all data)


Link: View Related Information
Description: National Weather Service-NOAA National Centers for Environmental Prediction (NCEP). Model Analyses and Forecasts for the ETA, GFS, NGM and RUC models can be found.


Link: View Related Information
Description: This data set is part of the Global Ocean Data Assimilation Experiment (GODAE) data sets. Under NOAA NCEP GFS Model data set, information and documentation can be found about model provider and the GFS model.


Link: View Related Information
Description: National Centers for Environmental Prediction (NCEP) GFS Model Home Page.


Geographic Coverage
 N: 90.0 S: -90.0  E: 180.0  W: -180.0

Data Set Citation
Dataset Originator/Creator: NOAA National Weather Service, Envionmental Modeling Center
Online Resource: http://www.emc.ncep.noaa.gov/index.php?branch=GFS


Temporal Coverage
Start Date: 2004-03-02


Location Keywords
GEOGRAPHIC REGION > GLOBAL LAND
GEOGRAPHIC REGION > GLOBAL OCEAN


Data Resolution
Latitude Resolution: 0.5 degree
Longitude Resolution: 0.5 degree
Vertical Resolution: 64 unequally-spaced sigma levels.


Science Keywords
ATMOSPHERE >ALTITUDE >GEOPOTENTIAL HEIGHT    [Definition]
ATMOSPHERE >ALTITUDE >PLANETARY BOUNDARY LAYER HEIGHT    [Definition]
ATMOSPHERE >ATMOSPHERIC CHEMISTRY >OXYGEN COMPOUNDS >OZONE    [Definition]
ATMOSPHERE >ATMOSPHERIC PRESSURE >PLANETARY BOUNDARY LAYER HEIGHT    [Definition]
ATMOSPHERE >ATMOSPHERIC PRESSURE >SEA LEVEL PRESSURE    [Definition]
ATMOSPHERE >ATMOSPHERIC RADIATION >HEAT FLUX    [Definition]
ATMOSPHERE >ATMOSPHERIC RADIATION >LONGWAVE RADIATION    [Definition]
ATMOSPHERE >ATMOSPHERIC RADIATION >SHORTWAVE RADIATION    [Definition]
ATMOSPHERE >ATMOSPHERIC TEMPERATURE >SURFACE TEMPERATURE >AIR TEMPERATURE    [Definition]
ATMOSPHERE >ATMOSPHERIC WATER VAPOR >CONDENSATION    [Definition]
ATMOSPHERE >ATMOSPHERIC WATER VAPOR >DEW POINT TEMPERATURE    [Definition]
ATMOSPHERE >ATMOSPHERIC WINDS >BOUNDARY LAYER WINDS    [Definition]
ATMOSPHERE >ATMOSPHERIC WINDS >CONVECTION    [Definition]
ATMOSPHERE >ATMOSPHERIC WINDS >VORTICITY    [Definition]
ATMOSPHERE >CLOUDS >CLOUD PROPERTIES >CLOUD BASE HEIGHT    [Definition]
ATMOSPHERE >PRECIPITATION >PRECIPITATION AMOUNT    [Definition]
CRYOSPHERE >SEA ICE >HEAT FLUX    [Definition]
CRYOSPHERE >SEA ICE >ICE TEMPERATURE    [Definition]
CRYOSPHERE >SNOW/ICE >SNOW COVER    [Definition]
LAND SURFACE >SOILS >SOIL TEMPERATURE    [Definition]
OCEANS >OCEAN HEAT BUDGET >HEAT FLUX    [Definition]
OCEANS >OCEAN TEMPERATURE >SEA SURFACE TEMPERATURE    [Definition]
OCEANS >SEA ICE >HEAT FLUX    [Definition]
OCEANS >SEA ICE >ICE ROUGHNESS    [Definition]
TERRESTRIAL HYDROSPHERE >SURFACE WATER >SURFACE WATER PROCESSES/MEASUREMENTS >RUNOFF    [Definition]


ISO Topic Category
null
null
null
null


Platform
NCEP-GFS >NCEP Global Forecast System


Project
NOMADS >The NOAA Operational Model Archive and Distribution System    [Information]
GODAE >Global Ocean Data Assimilation Experiment    [Information]


Keywords
GRIDDED DATA
DAILY
MODEL
NAVY
FORECAST MODELS
GLOBAL


Data Center
National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce    [Information]
Data Center URL: http://www.ncep.noaa.gov/

Data Center Personnel
Name: ZOLTAN TOTH
Phone: 301-763-8000 x 7596
Email: Zoltan.Toth at noaa.gov
Contact Address:
Global Climate and Weather Modeling Branch



Distribution
Distribution_Media: OPeNDAP from COLA/IGES, GrADS-DODS, LAS


Publications/References
Alpert, J.C., S-Y Hong and Y-J Kim, 199x: Sensitivity of cyclogenesis to lower
troposphere enhancement of gravity wave drag using the Environmental Modeling
Center medium range model. REF

Alpert, J.C., M. Kanamitsu, P.M. Caplan, J.G. Sela, G.H. White, and E. Kalnay,
1988: Mountain induced gravity wave drag parameterization in the NMC
medium-range model. Preprints of the Eighth Conference on Numerical Weather
Prediction, Baltimore, MD, American Meteorological Society, 726-733.

Arakawa, A. and W. H. Shubert, 1974: Interaction of a Cumulus Ensemble with the
Large-Scale Environment, Part I. J. Atmos. Sci., 31, 674-704.

Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100,
487-490.

Betts, A.K., S.-Y. Hong and H.-L. Pan, 1996: Comparison of NCEP-NCAR Reanalysis
with 1987 FIFE data. Mon. Wea. Rev., 124, 1480-1498

Briegleb, B. P., P. Minnus, V. Ramanathan, and E. Harrison, 1986: Comparison of
regional clear-sky albedo inferred from satellite observations and model
computations. J. Clim. and Appl. Meteo., 25, 214-226.

Campana, K. A., Y-T Hou, K. E. Mitchell, S-K Yang, and R. Cullather, 1994:
Improved diagnostic cloud parameterization in NMC's global model. Preprints of
the Tenth Conference on Numerical Weather Prediction, Portland, OR, American
Meteorological Society, 324-325.

Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor.
Soc., 81, 639-640.

Chen, F., K. Mitchell, J. Schaake, Y. Xue, H.-L. Pan, V. Koren, Q. Y. Duan, M.
Ek, and A. Betts, 1996: Modeling of land surface evaporation by four schemes
and comparison with FIFE observations. J. Geophys. Res., 101, D3, 7251-7268.

Chou, M-D, 1990: Parameterizations for the absorption of solar radiation by O2
and CO2 with application to climate studies. J. Climate, 3, 209-217.

Chou, M-D, 1992: A solar radiation model for use in climate studies. J. Atmos.
Sci., 49, 762-772.

Chou, M-D and K-T Lee, 1996: Parameterizations for the absorption of solar
radiation by water vapor and ozone. J. Atmos. Sci., 53, 1204-1208.

Chou, M.D., M. J. Suarez, C. H. Ho, M. M. H. Yan, and K. T. Lee, 1998:
Parameterizations for cloud overlapping and shortwave single scattering
properties for use in general circulation and cloud ensemble models. J.
Climate, 11, 202- 214.

Clough, S.A., M.J. Iacono, and J.-L. Moncet, 1992: Line-by-line calculations of
atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys.
Res., 97, 15761-15785.

Coakley, J. A., R. D. Cess, and F. B. Yurevich, 1983: The effect of
tropospheric aerosols on the earth's radiation budget: a parameterization for
climate models. J. Atmos. Sci., 42, 1408-1429.

Dorman, J.L., and P.J. Sellers, 1989: A global climatology of albedo, roughness
length and stomatal resistance for atmospheric general circulation models as
represented by the Simple Biosphere model (SiB). J. Appl. Meteor., 28, 833-855.

Ebert, E.E., and J.A. Curry, 1992: A parameterization of ice cloud optical
properties for climate models. J. Geophys. Res., 97, 3831-3836.

Frohlich, C. and G. E. Shaw, 1980: New determination of Rayleigh scattering in
the terrestrial atmosphere. Appl. Opt., 14, 1773-1775.

Fu, Q., 1996: An accurate parameterization of the solar radiative properties of
cirrus clouds for climate models. J. Climate, 9, 2058-2082.

Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and
clouds: The software package OPAC. Bull. Am. Meteor. Soc., 79, 831-844.

Grell, G. A., 1993: Prognostic Evaluation of Assumprions Used by Cumulus
Parameterizations. Mon. Wea. Rev., 121, 764-787.

Grumbine, R. W., 1994: A sea-ice albedo experiment with the NMC medium range
forecast model. Weather and Forecasting, 9, 453-456.

Hong, S.-Y. and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in
a medium-range forecast model. Mon. Wea. Rev., 124, 2322-2339.

Hong, S.-Y., 1999: New global orography data sets. NCEP Office Note #424.

Hou, Y-T, K. A. Campana and S-K Yang, 1996: Shortwave radiation calculations in
the NCEP's global model. International Radiation Symposium, IRS-96, August
19-24, Fairbanks, AL.

Hou, Y.-T., S. Moorthi, and K.A. Campana, 2002: Parameterization of solar
radiation transfer in the NCEP models. NCEP Office Note 441.

Hu, Y.X., and K. Stamnes, 1993: An accurate parameterization of the radiative
properties of water clouds suitable for use in climate models. J. Climate, 6,
728-742.

Joseph, D., 1980: Navy 10' global elevation values. National Center for
Atmospheric Research notes on the FNWC terrain data set, 3 pp.

Kalnay, E. and M. Kanamitsu, 1988: Time Scheme for Stronglyt Nonlinear Damping
Equations. Mon. Wea. Rev., 116, 1945-1958.

Kalnay, M. Kanamitsu, and W.E. Baker, 1990: Global numerical weather prediction
at the National Meteorological Center. Bull. Amer. Meteor. Soc., 71, 1410-1428.

Kanamitsu, M., 1989: Description of the NMC global data assimilation and
forecast system. Wea. and Forecasting, 4, 335-342.

Kanamitsu, M., J.C. Alpert, K.A. Campana, P.M. Caplan, D.G. Deaven, M. Iredell,
B. Katz, H.-L. Pan, J. Sela, and G.H. White, 1991: Recent changes implemented
into the global forecast system at NMC. Wea. and Forecasting, 6, 425-435.

Kiehl, J.T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P.
J. Rasch, 1998: The national center for atmospheric research community climate
model CCM3. J. Climate, 11,1131-1149.

Kim, Y-J and A. Arakawa, 1995: Improvement of orographic gravity wave
parameterization using a mesoscale gravity wave model. J. Atmos. Sci. 52, 11,
1875-1902.

Koepke, P., M. Hess, I. Schult, and E.P. Shettle, 1997: Global aerosol data
set. MPI Meteorologie Hamburg Report No. 243, 44 pp.

Lacis, A.A., and J. E. Hansen, 1974: A parameterization for the absorption of
solar radiation in the Earth's atmosphere. J. Atmos. Sci., 31, 118-133.

Leith, C.E., 1971: Atmospheric predictability and two-dimensional turbulence.
J. Atmos. Sci., 28, 145-161.

Lindzen, R.S., 1981: Turbulence and stress due to gravity wave and tidal
breakdown. J. Geophys. Res., 86, 9707-9714.

Matthews, E., 1985: "Atlas of Archived Vegetation, Land Use, and Seasonal
Albedo Data Sets.", NASA Technical Memorandum 86199, Goddard Institute for
Space Studies, New York.

Mitchell, K. E. and D. C. Hahn, 1989: Development of a cloud forecast scheme
for the GL baseline global spectral model. GL-TR-89-0343, Geophysics
Laboratory, Hanscom AFB, MA.

Mlawer, E.J., S.J. Taubman, P.D. Brown, M.J. Iacono, and S.A. Clough, 1997:
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave. J. Geophys. Res., 102, 16663-16682.

Miyakoda, K., and J. Sirutis, 1986: Manual of the E-physics. [Available from
Geophysical Fluid Dynamics Laboratory, Princeton University, P.O. Box 308,
Princeton, NJ 08542.]

NMC Development Division, 1988: Documentation of the research version of the
NMC Medium-Range Forecasting Model. NMC Development Division, Camp Springs, MD,
504 pp.

Pan, H-L. and L. Mahrt, 1987: Interaction between soil hydrology and boundary
layer developments. Boundary Layer Meteor., 38, 185-202.

Pan, H.-L. and W.-S. Wu, 1995: Implementing a Mass Flux Convection
Parameterization Package for the NMC Medium-Range Forecast Model. NMC Office
Note, No. 409, 40pp. [ Available from NCEP, 5200 Auth Road, Washington, DC
20233 ]

Pierrehumbert, R.T., 1987: An essay on the parameterization of orographic wave
drag. Observation, Theory, and Modelling of Orographic Effects, Vol. 1, Dec.
1986, European Centre for Medium Range Weather Forecasts, Reading, UK, 251-282.

Ramsay, B.H., 1998: The interactive multisensor snow and ice mapping system.
Hydrol. Process. 12, 1537-1546.

Reynolds, R. W. and T. M. Smith, 1994: Improved global sea surface temperature
analyses. J. Climate, 7, 929-948.

Roberts, R.E., J.A. Selby, and L.M. Biberman, 1976: Infrared continuum
absorption by atmospheric water vapor in the 8-12 micron window. Appl. Optics.,
15, 2085-2090.

Rodgers, C.D., 1968: Some extension and applications of the new random model
for molecular band transmission. Quart. J. Roy. Meteor. Soc., 94, 99-102.

Schwarzkopf, M.D., and S.B. Fels, 1985: Improvements to the algorithm for
computing CO2 transmissivities and cooling rates. J. Geophys. Res., 90,
10541-10550.

Schwarzkopf, M.D., and S.B. Fels, 1991: The simplified exchange method
revisited: An accurate, rapid method for computation of infrared cooling rates
and fluxes. J. Geophys. Res., 96, 9075-9096.

Sela, J., 1980: Spectral modeling at the National Meteorological Center, Mon.
Wea. Rev., 108, 1279-1292.

Slingo, A., 1989: A GCM parameterization for the shortwave radiative properties
pf water clouds. J. Atmos. Sci.,46, 1419-1427.

Slingo, J.M., 1987: The development and verification of a cloud prediction
model for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113, 899-927.

Slingo, A., 1989: A GCM parameterization for the shortwave radiative properties
pf water clouds. J. Atmos. Sci.,46, 1419-1427.

Stephens, G. L., 1984: The parameterization of radiation for numerical weather
prediction and climate models. Mon.Wea. Rew., 112, 826-867.

Staylor, W. F. and A. C. Wilbur, 1990: Global surface albedoes estimated from
ERBE data. Preprints of the Seventh Conference on Atmospheric Radiation, San
Francisco CA, American Meteorological Society, 231-236.

Sundqvist, H., E. Berge, and J. E. Kristjansson, 1989: Condensation and cloud
studies with mesoscale numerical weather prediction model. Mon. Wea. Rev., 117,
1641- 1757.

Tiedtke, M., 1983: The sensitivity of the time-mean large-scale flow to cumulus
convection in the ECMWF model. ECMWF Workshop on Convection in Large-Scale
Models, 28 November-1 December 1983, Reading, England, pp. 297-316.

Troen, I. and L. Mahrt, 1986: A simple model of the atmospheric boundary layer;
Sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129-148

Xu, K. M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization
for use in climate models. J. Atmos. Sci., 53, 3084-3102.

Zeng, X., M. Zhao, and R.E. Dickinson, 1998: Intercomparison of bulk
aerodynamical algorithms for the computation of sea surface fluxes using TOGA
COARE and TAO data. J. Climate, 11, 2628-2644.

Zhao, Q. Y., and F. H. Carr, 1997: A prognostic cloud scheme for operational
NWP models. Mon. Wea. Rev., 125,1931-1953.

Creation and Review Dates
DIF Creation Date: 2004-11-23
Last DIF Revision Date: 2016-11-18



Link to Web Site