Processes Regulating Iron Supply at the Mesoscale - Ross Sea

Project Description
[Source: PRISM-RS Home Page, http://www.imber.info/index.php/Science/Endorsed-projects/PRISM-RS-... ]

The Ross Sea continental shelf is one of the most productive areas in the Southern Ocean, and may comprise a significant, but unaccounted for, oceanic CO2 sink, largely driven by phytoplankton production. The processes that control the magnitude of primary production in this region are not well understood, but data suggest that iron limitation is a factor. Field observations and model simulations indicate four potential sources of dissolved iron to surface waters of the Ross Sea:

circumpolar Deep Water (CDW) intruding from the shelf edge;
sediments on shallow banks and nearshore areas;
melting sea ice around the perimeter of the polynya;
glacial meltwater from the Ross Ice Shelf.

The principal investigators hypothesize that hydrodynamic transport via mesoscale currents, fronts, and eddies facilitate the supply of dissolved iron from these four sources to the surface waters of the Ross Sea polynya. These hypotheses will be tested through a combination of in situ observations and numerical modeling, complemented by satellite remote sensing. In situ observations will be obtained during a month-long cruise in the austral summer. The field data will be incorporated into model simulations, which allow quantification of the relative contributions of the various hypothesized iron supply mechanisms, and assessment of their impact on primary production. The research will provide new insights and a mechanistic understanding of the complex oceanographic phenomena that regulate iron supply, primary production, and biogeochemical cycling. The research will thus form the basis for predictions about how this system may change in a warming climate.