Developing Arctic Modelling & Observing Capabilities for Long-term Env. Studies

Project Description
Short Title: DAMOCLES
Project URL:
Proposal URL:

The main objective of DAMOCLES is to reduce the uncertainties in our understanding of climate change in the Arctic and in the impacts thereof. To meet this objective DAMOCLES will, following the approach of Numerical Weather Prediction Centers, develop an integrated system for obtaining relevant geophysical observations, transferring them to a central databank, distributing them to the modelling centers, and producing nowcasts and forecasts of the Arctic climate. But since there exists no such thing as an Arctic Ocean Observing System, nor fully validated models for Arctic climate, nor accepted methods for forecasting of climate, a number of specific objectives need to be met in DAMOCLES:

1. Synoptic observational coverage of the Arctic Ocean sea-ice cover
The variability of sea-ice thickness, extent, concentration, ice-type and drift will be monitored by remote and in-situ systems in near real-time. Sea-ice dynamics and thermodynamics will be scrutinized to better understand their role for the large-scale ice-atmosphere-ocean system
2. Synoptic observation and investigation of atmospheric key processes
Aimed at a better predictability of the Arctic weather and climate key processes are investigated in a combined observational/process-modelling effort: the effects of Arctic cyclone on sea-ice in terms of heat and moisture transport, an improvement of boundary-layer physics over ice and ocean, an improvement of the radiative transfers and its interaction with snow and sea-ice
3. Synoptic observation of the Arctic Ocean circulation and key processes
An observational system will be set up with the aim to improve the understanding of the large-scale circulation of the Arctic Ocean and its vertical and lateral exchanges as well as the communication between central basins and the shelves. New techniques will be used to assess synoptically the state of the ocean under the ice and the fluxes of heat, salt and volume across the boundaries.
4. Integration and assimilation of observations with large-scale models
Model sensitivities will be investigated and performance be improved by model-model and model-data comparison, aiming at an improved predictability.
Observations will be enhanced by a set of assimilation activities to deliver re-analysed Arctic variables in time and space

To address the question of potential impacts of climate change in the Arctic the following specific objective of DAMOCLES can be formulated:

5. Assessment of impact on environment and humans
The observationally supported model improvements, the model sensitivities and past ranges of variability will be combined with new field data. The aim is to evaluate improved predictability and its consequences, as well as the impact of projected changes on adaptation capabilities and vulnerability of the environment and human activities.

Exploitation and dissemination of the results are key elements of the project. Thus, a 6th specific objective is:
6.User-friendly return of information to the community
A website will be available; giving the community updated information about the state of the Arctic (e.g. real-time information of key atmospheric, ice and ocean variables) as well as information about the progress of the science of DAMOCLES. Education will be provided, through workshops and student scholarships. Results will be published, both in scientific journals and in the popular-scientific press. The PIs will generally make themselves available to the public to the best of their ability.