ServiceParameters
![]()
Global Rainfall Predictor
Entry ID:
USDA_ARS_RainSIM
Summary
Abstract:
The Global Rainfall Predictor (Global RainSIM) forecasts the daily rainfall based upon two databases.The first was the average number of days in a month with precipitation (wet days) that were compiled and interpolated by Legates and Willmott (1990a and 1990b) with further improvements by Willmott and Matsuura (1995). The second database was the global average monthly precipitation data collected ...
![]() Purpose: The purpose of the Global Rainfall Predictor (Global RainSIM) is to estimate daily precipitation patterns for a yearly cycle at any location on the globe. The user input is simply the latitude and longitude of the selected location. There is an embedded Zip Code search routine to find the latitude and longitude for US cities.
Related URL
Service Citation
Service Keywords
Science Keywords
ISO Topic Category
Access Constraints
User registration is required before downloading.
Ancillary Keywords
Service Provider
Personnel
Publications/References
Legates, D. R. and C. J. Willmott (1990a) Mean Seasonal and Spatial Variability Global Surface Air Temperature. Theoretical and Applied Climatology , 41, 11-21.
Legates, D. R. and C. J. Willmott(1990b) Mean Seasonal and Spatial Variability in Gauge-Corrected, Global Precipitation. International Journal of Climatology, 10, 111-127. New, M., Hulme, M. and Jones, P.D.(1999) Representing twentieth century space-time climate variability. Part 1: development of a 1961-90 mean monthly terrestrial climatology. Journal of Climate 12, 829-856. Willmott, C. J. and K. Matsuura (1995) Smart Interpolation of Annually Averaged Air Temperature in the United States. Journal of Applied Meteorology, 34, 2577-2586. Extended Metadata Properties
![]() Creation and Review Dates
|